

Contents

	Overview
	Usage

	Features

	Known issues

	Requirements

	Similar projects

	Installation

	Usage

	Reference
	manhole

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	1.5.0 (2017-08-31)

	1.4.0 (2017-08-29)

	1.3.0 (2015-09-03)

	1.2.0 (2015-07-06)

	1.1.0 (2015-06-06)

	1.0.0 (2014-10-13)

	0.6.2 (2014-04-28)

	0.6.1 (2014-04-28)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/python-manhole]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.org/ionelmc/python-manhole] [image: Requirements Status] [https://requires.io/github/ionelmc/python-manhole/requirements/?branch=master]

[image: Coverage Status] [https://coveralls.io/r/ionelmc/python-manhole] [image: Coverage Status] [https://codecov.io/github/ionelmc/python-manhole]

[image: Code Quality Status] [https://landscape.io/github/ionelmc/python-manhole/master] [image: Scrutinizer Status] [https://scrutinizer-ci.com/g/ionelmc/python-manhole/] [image: Codacy Code Quality Status] [https://www.codacy.com/app/ionelmc/python-manhole] [image: CodeClimate Quality Status] [https://codeclimate.com/github/ionelmc/python-manhole]

	package

	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/manhole] [image: PyPI Wheel] [https://pypi.python.org/pypi/manhole] [image: Supported versions] [https://pypi.python.org/pypi/manhole] [image: Supported implementations] [https://pypi.python.org/pypi/manhole]

[image: Commits since latest release] [https://github.com/ionelmc/python-manhole/compare/v1.5.0...master]

Manhole is in-process service that will accept unix domain socket connections and present the
stacktraces for all threads and an interactive prompt. It can either work as a python daemon
thread waiting for connections at all times or a signal handler (stopping your application and
waiting for a connection).

Access to the socket is restricted to the application’s effective user id or root.

This is just like Twisted’s manhole [http://twistedmatrix.com/documents/current/api/twisted.conch.manhole.html].
It’s simpler (no dependencies), it only runs on Unix domain sockets (in contrast to Twisted’s manhole which
can run on telnet or ssh) and it integrates well with various types of applications.

	Documentation

	http://python-manhole.readthedocs.org/en/latest/

Usage

Install it:

pip install manhole

You can put this in your django settings, wsgi app file, some module that’s always imported early etc:

import manhole
manhole.install() # this will start the daemon thread

and now you start your app, eg: server.serve_forever()

Now in a shell you can do either of these:

netcat -U /tmp/manhole-1234
socat - unix-connect:/tmp/manhole-1234
socat readline unix-connect:/tmp/manhole-1234

Socat with readline is best (history, editing etc).

Sample output:

$ nc -U /tmp/manhole-1234

Python 2.7.3 (default, Apr 10 2013, 06:20:15)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>> dir()
['__builtins__', 'dump_stacktraces', 'os', 'socket', 'sys', 'traceback']
>>> print 'foobar'
foobar

Alternative client

There’s a new experimental manhole-cli bin since 1.1.0, that emulates socat:

usage: manhole-cli [-h] [-t TIMEOUT] [-1 | -2 | -s SIGNAL] PID

Connect to a manhole.

positional arguments:
 PID A numerical process id, or a path in the form:
 /tmp/manhole-1234

optional arguments:
 -h, --help show this help message and exit
 -t TIMEOUT, --timeout TIMEOUT
 Timeout to use. Default: 1 seconds.
 -1, -USR1 Send USR1 (10) to the process before connecting.
 -2, -USR2 Send USR2 (12) to the process before connecting.
 -s SIGNAL, --signal SIGNAL
 Send the given SIGNAL to the process before
 connecting.

Features

	Uses unix domain sockets, only root or same effective user can connect.

	Can run the connection in a thread or in a signal handler (see oneshot_on option).

	Can start the thread listening for connections from a signal handler (see activate_on option)

	Compatible with apps that fork, reinstalls the Manhole thread after fork - had to monkeypatch os.fork/os.forkpty for
this.

	Compatible with gevent and eventlet with some limitations - you need to either:

	Use oneshot_on, or

	Disable thread monkeypatching (eg: gevent.monkey.patch_all(thread=False), eventlet.monkey_patch(thread=False)

Note: on eventlet you might [https://github.com/eventlet/eventlet/issues/401] need to setup the hub first to prevent
circular import problems:

import eventlet
eventlet.hubs.get_hub() # do this first
eventlet.monkey_patch(thread=False)

	The thread is compatible with apps that use signalfd (will mask all signals for the Manhole threads).

Options

manhole.install(
 verbose=True,
 verbose_destination=2,
 patch_fork=True,
 activate_on=None,
 oneshot_on=None,
 sigmask=manhole.ALL_SIGNALS,
 socket_path=None,
 reinstall_delay=0.5,
 locals=None,
 strict=True,
)

	verbose - Set it to False to squelch the logging.

	verbose_destination - Destination for verbose messages. Set it to a file descriptor or handle. Default is
unbuffered stderr (stderr 2 file descriptor).

	patch_fork - Set it to False if you don’t want your os.fork and os.forkpy monkeypatched

	activate_on - Set to "USR1", "USR2" or some other signal name, or a number if you want the Manhole thread
to start when this signal is sent. This is desirable in case you don’t want the thread active all the time.

	thread - Set to True to start the always-on ManholeThread. Default: True.
Automatically switched to False if oneshot_on or activate_on are used.

	oneshot_on - Set to "USR1", "USR2" or some other signal name, or a number if you want the Manhole to
listen for connection in the signal handler. This is desireable in case you don’t want threads at all.

	sigmask - Will set the signal mask to the given list (using signalfd.sigprocmask). No action is done if
signalfd is not importable. NOTE: This is done so that the Manhole thread doesn’t steal any signals;
Normally that is fine because Python will force all the signal handling to be run in the main thread but signalfd
doesn’t.

	socket_path - Use a specific path for the unix domain socket (instead of /tmp/manhole-<pid>). This disables
patch_fork as children cannot reuse the same path.

	reinstall_delay - Delay the unix domain socket creation reinstall_delay seconds. This alleviates
cleanup failures when using fork+exec patterns.

	locals - Names to add to manhole interactive shell locals.

	daemon_connection - The connection thread is daemonic (dies on app exit). Default: False.

	redirect_stderr - Redirect output from stderr to manhole console. Default: True.

	strict - If True then AlreadyInstalled will be raised when attempting to install manhole twice.
Default: True.

Environment variable installation

Manhole can be installed via the PYTHONMANHOLE environment varialbe.

This:

PYTHONMANHOLE='' python yourapp.py

Is equivalent to having this in yourapp.py:

import manhole
manhole.install()

Any extra text in the environment variable is passed to manhole.install(). Example:

PYTHONMANHOLE='onshot_on="USR2"' python yourapp.py

What happens when you actually connect to the socket

	Credentials are checked (if it’s same user or root)

	sys.__std*__/sys.std* are redirected to the UDS

	Stacktraces for each thread are written to the UDS

	REPL is started so you can fiddle with the process

Known issues

	Using threads and file handle (not raw file descriptor) verbose_destination can cause deadlocks. See bug reports:
PyPy [https://bitbucket.org/pypy/pypy/issue/1895/writing-to-stderr-from-multiple-processes] and Python 3.4 [http://bugs.python.org/issue22697].

SIGTERM and socket cleanup

By default Python doesn’t call the atexit callbacks with the default SIGTERM handling. This makes manhole leave
stray socket files around. If this is undesirable you should install a custom SIGTERM handler so atexit is
properly invoked.

Example:

import signal
import sys

def handle_sigterm(signo, frame):
 sys.exit(128 + signo) # this will raise SystemExit and cause atexit to be called

signal.signal(signal.SIGTERM, handle_sigterm)

Using Manhole with uWSGI

Because uWSGI overrides signal handling Manhole is a bit more tricky to setup. One way is to use “uWSGI signals” (not
the POSIX signals) and have the workers check a file for the pid you want to open the Manhole in.

Stick something this in your WSGI application file:

from __future__ import print_function
import sys
import os
import manhole

stack_dump_file = '/tmp/manhole-pid'
uwsgi_signal_number = 17

try:
 import uwsgi

 if not os.path.exists(stack_dump_file):
 open(stack_dump_file, 'w')

 def open_manhole(dummy_signum):
 with open(stack_dump_file, 'r') as fh:
 pid = fh.read().strip()
 if pid == str(os.getpid()):
 inst = manhole.install(strict=False, thread=False)
 inst.handle_oneshot(dummy_signum, dummy_signum)

 uwsgi.register_signal(uwsgi_signal_number, 'workers', open_manhole)
 uwsgi.add_file_monitor(uwsgi_signal_number, stack_dump_file)

 print("Listening for stack mahole requests via %r" % (stack_dump_file,), file=sys.stderr)
except ImportError:
 print("Not running under uwsgi; unable to configure manhole trigger", file=sys.stderr)
except IOError:
 print("IOError creating manhole trigger %r" % (stack_dump_file,), file=sys.stderr)

somewhere bellow you'd have something like
from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()
or
def application(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain'), ('Content-Length', '2')])
 yield b'OK'

To open the Manhole just run echo 1234 > /tmp/manhole-pid and then manhole-cli 1234.

Requirements

	OS

	Linux, OS X

	Runtime

	Python 2.7, 3.4, 3.5, 3.6 or PyPy

Similar projects

	Twisted’s manhole [http://twistedmatrix.com/documents/current/api/twisted.conch.manhole.html] - it has colors and
server-side history.

	wsgi-shell [https://github.com/GrahamDumpleton/wsgi-shell] - spawns a thread.

	pyrasite [https://github.com/lmacken/pyrasite] - uses gdb to inject code.

	pydbattach [https://github.com/albertz/pydbattach] - uses gdb to inject code.

	pystuck [https://github.com/alonho/pystuck] - very similar, uses rpyc [https://github.com/tomerfiliba/rpyc] for
communication.

	pyringe [https://github.com/google/pyringe] - uses gdb to inject code, more reliable, but relies on dbg python
builds unfortunatelly.

	pdb-clone [https://pypi.python.org/pypi/pdb-clone] - uses gdb to inject code, with a different strategy [https://code.google.com/p/pdb-clone/wiki/RemoteDebugging].

Installation

At the command line:

pip install manhole

Usage

To use manhole in a project:

import manhole

Reference

	manhole

manhole

	
class manhole.Logger

	Internal object used for logging.

Initially this is not configured. Until you call manhole.install(), this logger object won’t work (will raise
NotInstalled).

	
time() → floating point number

	Return the current time in seconds since the Epoch.
Fractions of a second may be present if the system clock provides them.

	
class manhole.ManholeConnectionThread(client, connection_handler, daemon=False)

	Manhole thread that handles the connection. This thread is a normal thread (non-daemon) - it won’t exit if the
main thread exits.

	
class manhole.ManholeThread(get_socket, sigmask, start_timeout, connection_handler, bind_delay=None, daemon_connection=False)

	Thread that runs the infamous “Manhole”. This thread is a daemon thread - it will exit if the main thread
exits.

On connect, a different, non-daemon thread will be started - so that the process won’t exit while there’s a
connection to the manhole.

	Parameters

	
	sigmask (list of signal numbers) – Signals to block in this thread.

	start_timeout (float) – Seconds to wait for the thread to start. Emits a message if the thread is not running
when calling start().

	bind_delay (float) – Seconds to delay socket binding. Default: no delay.

	daemon_connection (bool) – The connection thread is daemonic (dies on app exit). Default: False.

	
clone(**kwargs)

	Make a fresh thread with the same options. This is usually used on dead threads.

	
run()

	Runs the manhole loop. Only accepts one connection at a time because:

	This thread is a daemon thread (exits when main thread exists).

	The connection need exclusive access to stdin, stderr and stdout so it can redirect inputs and outputs.

	
manhole.check_credentials(client)

	Checks credentials for given socket.

	
manhole.dump_stacktraces()

	Dumps thread ids and tracebacks to stdout.

	
manhole.get_peercred(sock)

	Gets the (pid, uid, gid) for the client on the given connected socket.

	
manhole.handle_connection_exec(client)

	Alternate connection handler. No output redirection.

	
manhole.handle_connection_repl(client)

	Handles connection.

	
manhole.handle_repl(locals)

	Dumps stacktraces and runs an interactive prompt (REPL).

	
manhole.install(verbose=True, verbose_destination=2, strict=True, **kwargs)

	Installs the manhole.

	Parameters

	
	verbose (bool) – Set it to False to squelch the logging.

	verbose_destination (file descriptor or handle) – Destination for verbose messages. Default is unbuffered stderr
(stderr 2 file descriptor).

	patch_fork (bool) – Set it to False if you don’t want your os.fork and os.forkpy monkeypatched

	activate_on (int or signal name) – set to "USR1", "USR2" or some other signal name, or a number if you
want the Manhole thread to start when this signal is sent. This is desireable in case you don’t want the
thread active all the time.

	oneshot_on (int or signal name) – Set to "USR1", "USR2" or some other signal name, or a number if you
want the Manhole to listen for connection in the signal handler. This is desireable in case you don’t want
threads at all.

	thread (bool) – Start the always-on ManholeThread. Default: True. Automatically switched to False if
oneshort_on or activate_on are used.

	sigmask (list of ints or signal names) – Will set the signal mask to the given list (using
signalfd.sigprocmask). No action is done if signalfd is not importable.
NOTE: This is done so that the Manhole thread doesn’t steal any signals; Normally that is fine because
Python will force all the signal handling to be run in the main thread but signalfd doesn’t.

	socket_path (str) – Use a specific path for the unix domain socket (instead of /tmp/manhole-<pid>). This
disables patch_fork as children cannot reuse the same path.

	reinstall_delay (float) – Delay the unix domain socket creation reinstall_delay seconds. This
alleviates cleanup failures when using fork+exec patterns.

	locals (dict) – Names to add to manhole interactive shell locals.

	daemon_connection (bool) – The connection thread is daemonic (dies on app exit). Default: False.

	redirect_stderr (bool) – Redirect output from stderr to manhole console. Default: True.

	connection_handler (function) – Connection handler to use. Use "exec" for simple implementation without
output redirection or your own function. (warning: this is for advanced users). Default: "repl".

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/ionelmc/python-manhole/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Manhole could always use more documentation, whether as part of the
official manhole docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/ionelmc/python-manhole/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up python-manhole for local development:

	Fork python-manhole [https://github.com/ionelmc/python-manhole]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/python-manhole.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/ionelmc/python-manhole/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Ionel Cristian Mărieș - http://blog.ionelmc.ro

	Saulius Menkevičius - https://github.com/razzmatazz

	Nir Soffer - http://nirs.freeshell.org

Changelog

1.5.0 (2017-08-31)

	Added two string aliases for connection_handler option. Now you can conveniently use connection_handler="exec".

	Improved handle_connection_exec. It now has a clean way to exit (exit()) and properly closes the socket.

1.4.0 (2017-08-29)

	Added the connection_handler install option. Default value is manhole.handle_connection_repl, and alternate
manhole.handle_connection_exec is provided (very simple: no output redirection, no stacktrace dumping).

	Dropped Python 3.2 from the test grid. It may work but it’s a huge pain to support (pip/pytest don’t support it anymore).

	Added Python 3.5 and 3.6 in the test grid.

	Fixed issues with piping to manhole-cli. Now echo foobar | manhole-cli will wait 1 second for output from manhole
(you can customize this with the --timeout option).

	Fixed issues with newer PyPy (caused by gevent/eventlet socket unwrapping).

1.3.0 (2015-09-03)

	Allowed Manhole to be configured without any thread or activation (in case you want to manually activate).

	Added an example and tests for using Manhole with uWSGi.

	Fixed error handling in manhole-cli on Python 3 (exc vars don’t leak anymore).

	Fixed support for running in gevent/eventlet-using apps on Python 3 (now that they support Python 3).

	Allowed reinstalling the manhole (in non-strict mode). Previous install is undone.

1.2.0 (2015-07-06)

	Changed manhole-cli:

	Won’t spam the terminal with errors if socket file doesn’t exist.

	Allowed sending any signal (new --signal argument).

	Fixed some validation issues for the PID argument.

1.1.0 (2015-06-06)

	Added support for installing the manhole via the PYTHONMANHOLE environment variable.

	Added a strict install option. Set it to false to avoid getting the AlreadyInstalled exception.

	Added a manhole-cli script that emulates socat readline unix-connect:/tmp/manhole-1234.

1.0.0 (2014-10-13)

	Added socket_path install option (contributed by Nir Soffer [https://github.com/nirs]).

	Added reinstall_delay install option.

	Added locals install option (contributed by Nir Soffer [https://github.com/nirs]).

	Added redirect_stderr install option (contributed by Nir Soffer [https://github.com/nirs]).

	Lots of internals cleanup (contributed by Nir Soffer [https://github.com/nirs]).

0.6.2 (2014-04-28)

	Fix OS X regression.

0.6.1 (2014-04-28)

	Support for OS X (contributed by Saulius Menkevičius [https://github.com/razzmatazz]).

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 manhole	

Index

 C
 | D
 | G
 | H
 | I
 | L
 | M
 | R
 | T

C

 	
 	check_credentials() (in module manhole)

 	
 	clone() (manhole.ManholeThread method)

D

 	
 	dump_stacktraces() (in module manhole)

G

 	
 	get_peercred() (in module manhole)

H

 	
 	handle_connection_exec() (in module manhole)

 	
 	handle_connection_repl() (in module manhole)

 	handle_repl() (in module manhole)

I

 	
 	install() (in module manhole)

L

 	
 	Logger (class in manhole)

M

 	
 	manhole (module)

 	
 	ManholeConnectionThread (class in manhole)

 	ManholeThread (class in manhole)

R

 	
 	run() (manhole.ManholeThread method)

T

 	
 	time() (manhole.Logger method)

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Usage

 		
 Alternative client

 		
 Features

 		
 Options

 		
 Environment variable installation

 		
 What happens when you actually connect to the socket

 		
 Known issues

 		
 SIGTERM and socket cleanup

 		
 Using Manhole with uWSGI

 		
 Requirements

 		
 Similar projects

 		
 Installation

 		
 Usage

 		
 Reference

 		
 manhole

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 1.5.0 (2017-08-31)

 		
 1.4.0 (2017-08-29)

 		
 1.3.0 (2015-09-03)

 		
 1.2.0 (2015-07-06)

 		
 1.1.0 (2015-06-06)

 		
 1.0.0 (2014-10-13)

 		
 0.6.2 (2014-04-28)

 		
 0.6.1 (2014-04-28)

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

